LATTICE-VALUED CATEGORIES OF LATTICE-VALUED CONVERGENCE SPACES
نویسنده
چکیده مقاله:
We study L-categories of lattice-valued convergence spaces. Suchcategories are obtained by fuzzifying" the axioms of a lattice-valued convergencespace. We give a natural example, study initial constructions andfunction spaces. Further we look into some L-subcategories. Finally we usethis approach to quantify how close certain lattice-valued convergence spacesare to being lattice-valued topological spaces.
منابع مشابه
ON STRATIFIED LATTICE-VALUED CONVERGENCE SPACES
In this paper we provide a common framework for different stratified $LM$-convergence spaces introduced recently. To this end, we slightly alter the definition of a stratified $LMN$-convergence tower space. We briefly discuss the categorical properties and show that the category of these spaces is a Cartesian closed and extensional topological category. We also study the relationship of our cat...
متن کاملCONVERGENCE APPROACH SPACES AND APPROACH SPACES AS LATTICE-VALUED CONVERGENCE SPACES
We show that the category of convergence approach spaces is a simultaneously reective and coreective subcategory of the category of latticevalued limit spaces. Further we study the preservation of diagonal conditions, which characterize approach spaces. It is shown that the category of preapproach spaces is a simultaneously reective and coreective subcategory of the category of lattice-valued p...
متن کاملLattice-valued convergence spaces and regularity
We define a regularity axiom for lattice-valued convergence spaces where the lattice is a complete Heyting algebra. To this end, we generalize the characterization of regularity by a ”dual form” of a diagonal condition. We show that our axiom ensures that a regular T1-space is separated and that regularity is preserved under initial constructions. Further we present an extension theorem for a c...
متن کاملconvergence approach spaces and approach spaces as lattice-valued convergence spaces
we show that the category of convergence approach spaces is a simultaneously reective and coreective subcategory of the category of latticevalued limit spaces. further we study the preservation of diagonal conditions, which characterize approach spaces. it is shown that the category of preapproach spaces is a simultaneously reective and coreective subcategory of the category of lattice-valued p...
متن کاملRemarks on completeness of lattice-valued Cauchy spaces
We study different completeness definitions for two categories of lattice-valued Cauchy spaces and the relations between these definitions. We also show the equivalence of a so-called completion axiom and the existence of a completion.
متن کاملA COMMON FRAMEWORK FOR LATTICE-VALUED, PROBABILISTIC AND APPROACH UNIFORM (CONVERGENCE) SPACES
We develop a general framework for various lattice-valued, probabilistic and approach uniform convergence spaces. To this end, we use the concept of $s$-stratified $LM$-filter, where $L$ and $M$ are suitable frames. A stratified $LMN$-uniform convergence tower is then a family of structures indexed by a quantale $N$. For different choices of $L,M$ and $N$ we obtain the lattice-valued, probabili...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 2
صفحات 67- 89
تاریخ انتشار 2011-06-17
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023